2 research outputs found

    Fusion of LIDAR with stereo camera data - an assessment

    Get PDF
    This thesis explores data fusion of LIDAR (laser range-finding) with stereo matching, with a particular emphasis on close-range industrial 3D imaging. Recently there has been interest in improving the robustness of stereo matching using data fusion with active range data. These range data have typically been acquired using time of flight cameras (ToFCs), however ToFCs offer poor spatial resolution and are noisy. Comparatively little work has been performed using LIDAR. It is argued that stereo and LIDAR are complementary and there are numerous advantages to integrating LIDAR into stereo systems. For instance, camera calibration is a necessary prerequisite for stereo 3D reconstruction, but the process is often tedious and requires precise calibration targets. It is shown that a visible-beam LIDAR enables automatic, accurate (sub-pixel) extrinsic and intrinsic camera calibration without any explicit targets. Two methods for using LIDAR to assist dense disparity maps from featureless scenes were investigated. The first involved using a LIDAR to provide high-confidence seed points for a region growing stereo matching algorithm. It is shown that these seed points allow dense matching in scenes which fail to match using stereo alone. Secondly, LIDAR was used to provide artificial texture in featureless image regions. Texture was generated by combining real or simulated images of every point the laser hits to form a pseudo-random pattern. Machine learning was used to determine the image regions that are most likely to be stereo- matched, reducing the number of LIDAR points required. Results are compared to competing techniques such as laser speckle, data projection and diffractive optical elements

    Ionised gas kinematics in bipolar H II regions

    Get PDF
    Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a multiwavelength study of a young, bipolar H II region in the Galactic disc, G316.81−0.06316.81-0.06, which lies at the centre of a massive (∼103\sim10^3 M⊙_{\odot}) infrared-dark cloud filament. It is still accreting molecular gas as well as driving a ∼0.2\sim 0.2 pc ionised gas outflow perpendicular to the filament. Intriguingly, we observe a large velocity gradient (47.81±3.2147.81 \pm 3.21 km s−1^{-1} pc−1^{-1}) across the ionised gas in a direction perpendicular to the outflow. This kinematic signature of the ionised gas shows a reasonable correspondence with the simulations of young H II regions. Based on a qualitative comparison between our observations and these simulations, we put forward a possible explanation for the velocity gradients observed in G316.81−0.06316.81-0.06. If the velocity gradient perpendicular to the outflow is caused by rotation of the ionised gas, then we infer that this rotation is a direct result of the initial net angular momentum in the natal molecular cloud. If this explanation is correct, this kinematic signature should be common in other young (bipolar) H II regions. We suggest that further quantitative analysis of the ionised gas kinematics of young H II regions, combined with additional simulations, should improve our understanding of feedback at these early stages
    corecore